{ "id": "math/0305064", "version": "v1", "published": "2003-05-04T14:28:42.000Z", "updated": "2003-05-04T14:28:42.000Z", "title": "Ordinary elliptic curves of high rank over $\\bar F_p(x)$ with constant j-invariant", "authors": [ "Irene I. Bouw", "Claus Diem", "Jasper Scholten" ], "comment": "15 pages, 0 figures, LaTeX", "categories": [ "math.NT", "math.AG" ], "abstract": "We show that under the assumption of Artin's Primitive Root Conjecture, for all primes p there exist ordinary elliptic curves over $\\bar F_p(x)$ with arbitrary high rank and constant j-invariant. For odd primes p, this result follows from a theorem which states that whenever p is a generator of (Z/ell Z)^*/<-1> (ell an odd prime) there exists a hyperelliptic curve over $\\bar F_p$ whose Jacobian is isogenous to a power of one ordinary elliptic curve.", "revisions": [ { "version": "v1", "updated": "2003-05-04T14:28:42.000Z" } ], "analyses": { "subjects": [ "11G05", "11G20", "14H40", "14H52" ], "keywords": [ "ordinary elliptic curve", "constant j-invariant", "odd prime", "artins primitive root conjecture", "arbitrary high rank" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5064B" } } }