{ "id": "math/0304476", "version": "v1", "published": "2003-04-29T13:17:45.000Z", "updated": "2003-04-29T13:17:45.000Z", "title": "Simultaneous avoidance of large squares and fractional powers in infinite binary words", "authors": [ "Jeffrey Shallit" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "In 1976, Dekking showed that there exists an infinite binary word that contains neither squares yy with y >= 4 nor cubes xxx. We show that `cube' can be replaced by any fractional power > 5/2. We also consider the analogous problem where `4' is replaced by any integer. This results in an interesting and subtle hierarchy.", "revisions": [ { "version": "v1", "updated": "2003-04-29T13:17:45.000Z" } ], "analyses": { "subjects": [ "68R15" ], "keywords": [ "infinite binary word", "fractional power", "large squares", "simultaneous avoidance", "squares yy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......4476S" } } }