{ "id": "math/0304429", "version": "v3", "published": "2003-04-27T18:23:37.000Z", "updated": "2004-01-12T20:46:46.000Z", "title": "Equidistribution and Sign-Balance on 321-Avoiding Permutations", "authors": [ "Ron M. Adin", "Yuval Roichman" ], "comment": "17 pages; to appear in S\\'em. Lothar. Combin", "categories": [ "math.CO" ], "abstract": "Let $T_n$ be the set of 321-avoiding permutations of order $n$. Two properties of $T_n$ are proved: (1) The {\\em last descent} and {\\em last index minus one} statistics are equidistributed over $T_n$, and also over subsets of permutations whose inverse has an (almost) prescribed descent set. An analogous result holds for Dyck paths. (2) The sign-and-last-descent enumerators for $T_{2n}$ and $T_{2n+1}$ are essentially equal to the last-descent enumerator for $T_n$. The proofs use a recursion formula for an appropriate multivariate generating function.", "revisions": [ { "version": "v3", "updated": "2004-01-12T20:46:46.000Z" } ], "analyses": { "keywords": [ "permutations", "sign-balance", "equidistribution", "appropriate multivariate generating function", "dyck paths" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......4429A" } } }