{ "id": "math/0304417", "version": "v2", "published": "2003-04-25T23:52:24.000Z", "updated": "2003-06-16T23:12:33.000Z", "title": "BMO is the intersection of two translates of dyadic BMO", "authors": [ "Tao Mei" ], "comment": "4 pages", "journal": "C. R. Math. Acad. Sci. Paris 336 (2003), no. 12, 1003--1006.", "categories": [ "math.CA" ], "abstract": "Let T be the unite circle on $R^2$. Denote by BMO(T) the classical BMO space and denote by BMO_D(T) the usual dyadic BMO space on T. We prove that, BMO(T) is the intersction of BMO_D(T) and a translate of BMO_D(T).", "revisions": [ { "version": "v2", "updated": "2003-06-16T23:12:33.000Z" } ], "analyses": { "subjects": [ "42B35" ], "keywords": [ "usual dyadic bmo space", "intersection", "classical bmo space", "unite circle" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......4417M" } } }