{ "id": "math/0304253", "version": "v1", "published": "2003-04-18T13:00:22.000Z", "updated": "2003-04-18T13:00:22.000Z", "title": "A generalization of Levinger's theorem to positive kernel operators", "authors": [ "Roman Drnovšek" ], "comment": "11 pages. To appear in Glasgow Math. J", "journal": "Glasgow Math. J. 45 (2003), no. 3, 545-555", "doi": "10.1017/S0017089503001459", "categories": [ "math.FA" ], "abstract": "We prove some inequalities for the spectral radius of positive operators on Banach function spaces. In particular, we show the following extension of Levinger's theorem. Let $K$ be a positive compact kernel operator on $L^2(X,\\mu)$ with the spectral radius $r(K)$. Then the function $\\phi$ defined by $\\phi(t) = r(t K + (1-t) K^*)$ is non-decreasing on $[0, {1/2}]$. We also prove that $\\| A + B^* \\| \\ge 2 \\cdot \\sqrt{r(A B)}$ for any positive operators $A$ and $B$ on $L^2(X,\\mu)$.", "revisions": [ { "version": "v1", "updated": "2003-04-18T13:00:22.000Z" } ], "analyses": { "keywords": [ "positive kernel operators", "levingers theorem", "generalization", "spectral radius", "banach function spaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......4253D" } } }