{ "id": "math/0303242", "version": "v1", "published": "2003-03-19T18:03:59.000Z", "updated": "2003-03-19T18:03:59.000Z", "title": "Existence result for a Neumann problem", "authors": [ "Nikolaos Halidias" ], "categories": [ "math.AP" ], "abstract": "In this paper we are going to show the existence of a nontrivial solution to the following model problem, $\\{\\begin{array}{lll} - \\Delta (u) = 2uln(1+u^2)+\\frac{|u|^2}{1+u^2}2u+usin(u) {a.e. on} \\Omega \\frac{\\partial u}{\\partial \\eta} = 0 {a.e. on} \\partial \\Omega. \\end{array} \\}$ As one can see the right hand side is superlinear. But we can not use an Ambrosetti-Rabinowitz condition in order to obtain that the corresponding energy functional satisfies (PS) condition. However, it follows that the energy functional satisfies the Cerami (PS) condition.", "revisions": [ { "version": "v1", "updated": "2003-03-19T18:03:59.000Z" } ], "analyses": { "subjects": [ "35A15" ], "keywords": [ "neumann problem", "existence result", "corresponding energy functional satisfies", "right hand side", "nontrivial solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......3242H" } } }