{ "id": "math/0303185", "version": "v1", "published": "2003-03-15T11:30:02.000Z", "updated": "2003-03-15T11:30:02.000Z", "title": "Bowen-Franks groups as conjugacy invariants for $\\mathbb{T}^{n}$ automorphisms", "authors": [ "P. Martins Rodrigues", "J. Sousa Ramos" ], "comment": "15 pages", "categories": [ "math.DS" ], "abstract": "The role of generalized Bowen-Franks groups (BF-groups) as topological conjugacy invariants for $\\mathbb{T}^{n}$ automorphisms is studied. Using algebraic number theory, a link is established between equality of BF-groups for different automorphisms ($BF$-equivalence) and an identical position in a finite lattice ($\\mathcal{L}$-equivalence). Important cases of equivalence of the two conditions are proved. Finally, a topological interpretation of the classical BF-group $\\mathbb{Z}% ^{n}/\\mathbb{Z}^{n}(I-A)$ in this context is presented.", "revisions": [ { "version": "v1", "updated": "2003-03-15T11:30:02.000Z" } ], "analyses": { "subjects": [ "37C15", "37C25", "15A36", "11R04" ], "keywords": [ "automorphisms", "equivalence", "algebraic number theory", "topological conjugacy invariants", "generalized bowen-franks groups" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......3185M" } } }