{ "id": "math/0303117", "version": "v1", "published": "2003-03-10T20:58:46.000Z", "updated": "2003-03-10T20:58:46.000Z", "title": "Surface order large deviations for 2d FK-percolation and Potts models", "authors": [ "O. Couronne", "R. J. Messikh" ], "comment": "18 pages, 4 figures", "categories": [ "math.PR" ], "abstract": "By adapting the renormalization techniques of Pisztora, we establish surface order large deviations estimates for FK-percolation on $\\Z^2$ with parameter $q\\geq 1$ and for the corresponding Potts models. Our results are valid up to the exponential decay threshold of dual connectivities which is widely believed to agree with the critical point.", "revisions": [ { "version": "v1", "updated": "2003-03-10T20:58:46.000Z" } ], "analyses": { "subjects": [ "60F10", "60K35", "82B20", "82B43" ], "keywords": [ "potts models", "2d fk-percolation", "surface order large deviations estimates", "establish surface order large deviations", "exponential decay threshold" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......3117C" } } }