{ "id": "math/0302345", "version": "v1", "published": "2003-02-27T18:06:27.000Z", "updated": "2003-02-27T18:06:27.000Z", "title": "Translating solutions for Gauss curvature flows with Neumann boundary conditions", "authors": [ "Oliver C. Schnuerer", "Hartmut R. Schwetlick" ], "comment": "22 pages, 6 figures; submitted to Pacific J. Math", "categories": [ "math.AP", "math.DG" ], "abstract": "We consider strictly convex hypersurfaces which are evolving by the non-parametric logarithmic Gauss curvature flow subject to a Neumann boundary condition. Solutions are shown to converge smoothly to hypersurfaces moving by translation. In particular, for bounded domains we prove that convex functions with prescribed normal derivative satisfy a uniform oscillation estimate.", "revisions": [ { "version": "v1", "updated": "2003-02-27T18:06:27.000Z" } ], "analyses": { "subjects": [ "53C44", "35K20", "53C42" ], "keywords": [ "neumann boundary condition", "translating solutions", "logarithmic gauss curvature flow subject", "non-parametric logarithmic gauss curvature flow", "uniform oscillation estimate" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2345S" } } }