{ "id": "math/0302330", "version": "v1", "published": "2003-02-26T18:18:51.000Z", "updated": "2003-02-26T18:18:51.000Z", "title": "Refined geometric L^p Hardy inequalities", "authors": [ "G. Barbatis", "S. Filippas", "A. Tertikas" ], "comment": "11 pages, to appear in Commun. Contemp. Math", "categories": [ "math.AP", "math.SP" ], "abstract": "For a bounded convex domain \\Omega in R^N we prove refined Hardy inequalities that involve the Hardy potential corresponding to the distance to the boundary of \\Omega, the volume of $\\Omega$, as well as a finite number of sharp logarithmic corrections. We also discuss the best constant of these inequalities.", "revisions": [ { "version": "v1", "updated": "2003-02-26T18:18:51.000Z" } ], "analyses": { "subjects": [ "35J20", "35P20", "35P99", "26D10" ], "keywords": [ "refined geometric", "sharp logarithmic corrections", "best constant", "hardy potential", "bounded convex domain" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2330B" } } }