{ "id": "math/0302327", "version": "v1", "published": "2003-02-26T15:25:53.000Z", "updated": "2003-02-26T15:25:53.000Z", "title": "Series expansion for L^p Hardy inequalities", "authors": [ "G. Barbatis", "S. Filippas", "A. Tertikas" ], "comment": "16 pages, to appear in the Indiana Univ. Math. J", "categories": [ "math.AP", "math.SP" ], "abstract": "We consider a general class of sharp $L^p$ Hardy inequalities in $\\R^N$ involving distance from a surface of general codimension $1\\leq k\\leq N$. We show that we can succesively improve them by adding to the right hand side a lower order term with optimal weight and best constant. This leads to an infinite series improvement of $L^p$ Hardy inequalities.", "revisions": [ { "version": "v1", "updated": "2003-02-26T15:25:53.000Z" } ], "analyses": { "subjects": [ "35J20", "26D10", "46E35" ], "keywords": [ "hardy inequalities", "series expansion", "infinite series improvement", "right hand side", "lower order term" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2327B" } } }