{ "id": "math/0302276", "version": "v5", "published": "2003-02-22T08:59:15.000Z", "updated": "2006-10-02T18:46:18.000Z", "title": "A discrete form of the Beckman-Quarles theorem for mappings from R^2 (C^2) to F^2, where F is a subfield of a commutative field extending R (C)", "authors": [ "Apoloniusz Tyszka" ], "comment": "12 pages, LaTeX2e, the version that appeared in Journal of Geometry", "journal": "Journal of Geometry 85 (2006), no. 1-2, pp. 188-199", "categories": [ "math.MG" ], "abstract": "Let F be a subfield of a commutative field extending R. Let phi_n:F^n \\times F^n ->F, phi_n((x_1,...,x_n),(y_1,...,y_n))=(x_1-y_1)^2+...+(x_n-y_n)^2. We say that f:R^n->F^n preserves distance d>=0 if for each x,y \\in R^n |x-y|=d implies phi_n(f(x),f(y))=d^2. Let A_n(F) denote the set of all positive numbers d such that any map f:R^n->F^n that preserves unit distance preserves also distance d. Let D_n(F) denote the set of all positive numbers d with the property: if x,y \\in R^n and |x-y|=d then there exists a finite set S(x,y) with {x,y} \\subseteq S(x,y) \\subseteq R^n such that any map f:S(x,y)->F^n that preserves unit distance preserves also the distance between x and y. Obviously, {1} \\subseteq D_n(F) \\subseteq A_n(F). We prove: A_n(C) \\subseteq {d>0: d^2 \\in Q} \\subseteq D_2(F). Let K be a subfield of a commutative field Gamma extending C. Let psi_2: Gamma^2 \\times Gamma^2->Gamma, psi_2((x_1,x_2),(y_1,y_2))=(x_1-y_1)^2+(x_2-y_2)^2. We say that f:C^2->K^2 preserves unit distance if for each X,Y \\in C^2 psi_2(X,Y)=1 implies psi_2(f(X),f(Y))=1. We prove: if X,Y \\in C^2, psi_2(X,Y) \\in Q and X \\neq Y, then there exists a finite set S(X,Y) with {X,Y} \\subseteq S(X,Y) \\subseteq C^2 such that any map f:S(X,Y)->K^2 that preserves unit distance satisfies psi_2(X,Y)=psi_2(f(X),f(Y)) and f(X) \\neq f(Y).", "revisions": [ { "version": "v5", "updated": "2006-10-02T18:46:18.000Z" } ], "analyses": { "subjects": [ "51M05" ], "keywords": [ "commutative field extending", "preserves unit distance preserves", "beckman-quarles theorem", "discrete form", "finite set" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2276T" } } }