{ "id": "math/0302242", "version": "v2", "published": "2003-02-19T20:54:59.000Z", "updated": "2011-04-17T21:28:11.000Z", "title": "Mean Curvature Flows and Isotopy of Maps Between Spheres", "authors": [ "Mao-Pei Tsui", "Mu-Tao Wang" ], "comment": "21 pages", "journal": "Comm. Pure Appl. Math. 57 (2004), no. 8, 1110-1126", "categories": [ "math.DG", "math.AP" ], "abstract": "Let f be a smooth map between unit spheres of possibly different dimensions. We prove the global existence and convergence of the mean curvature flow of the graph of f under various conditions. A corollary is that any area-decreasing map between unit spheres (of possibly different dimensions) is homotopic to a constant map.", "revisions": [ { "version": "v2", "updated": "2011-04-17T21:28:11.000Z" } ], "analyses": { "subjects": [ "53C44" ], "keywords": [ "mean curvature flow", "unit spheres", "dimensions", "constant map", "smooth map" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2242T" } } }