{ "id": "math/0302231", "version": "v2", "published": "2003-02-19T14:23:47.000Z", "updated": "2003-10-10T16:19:07.000Z", "title": "Substitution Dynamical Systems: Characterization of Linear Repetitivity and Applications", "authors": [ "D. Damanik", "D. Lenz" ], "comment": "14 pages, assumption (4) included", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "We consider dynamical systems arising from substitutions over a finite alphabet. We prove that such a system is linearly repetitive if and only if it is minimal. Based on this characterization we extend various results from primitive substitutions to minimal substitutions. This includes applications to random Schr\\\"odinger operators and to number theory.", "revisions": [ { "version": "v2", "updated": "2003-10-10T16:19:07.000Z" } ], "analyses": { "subjects": [ "37B10", "68R15" ], "keywords": [ "substitution dynamical systems", "linear repetitivity", "characterization", "applications", "finite alphabet" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2231D" } } }