{ "id": "math/0302209", "version": "v1", "published": "2003-02-18T16:43:14.000Z", "updated": "2003-02-18T16:43:14.000Z", "title": "Theta functions on the moduli space of parabolic bundles", "authors": [ "Francesca Gavioli" ], "comment": "26 pages", "categories": [ "math.AG" ], "abstract": "Let X be a smooth projective connected curve of genus $g \\ge 2$ and let I be a finite set of points of X. Fix a parabolic structure on I for rank r vector bundles on X. Let $M^{par}$ denote the moduli space of parabolic semistable bundles and let $L^{par}$ denote the parabolic determinant bundle. In this paper we show that the n-th tensor power line bundle ${L^{par}}^n$ on the moduli space $M^{par}$ is globally generated, as soon as the integer n is such that $n \\ge [\\frac{r^2}{4}]$. In order to get this bound, we construct a parabolic analogue of the Quot scheme and extend the result of Popa and Roth on the estimate of its dimension.", "revisions": [ { "version": "v1", "updated": "2003-02-18T16:43:14.000Z" } ], "analyses": { "subjects": [ "14H10", "14F05", "14D20", "14H42" ], "keywords": [ "moduli space", "theta functions", "parabolic bundles", "n-th tensor power line bundle", "parabolic determinant bundle" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2209G" } } }