{ "id": "math/0302204", "version": "v1", "published": "2003-02-18T11:27:24.000Z", "updated": "2003-02-18T11:27:24.000Z", "title": "Nilpotent commuting varieties of reductive Lie algebras", "authors": [ "Alexander Premet" ], "comment": "25 pages", "categories": [ "math.RT" ], "abstract": "We prove that the nilpotent commuting variety of a reductive Lie algebra over an algebraically closed field of good characteristic is equidimensional. In characteristic zero, this confirms a conjecture of Vladimir Baranovsky. As a by-product, we obtain tat the punctual (local) Hilbert scheme parametrising the ideals of colength $n$ in $k[[X,Y]]$ is irreducible over any algebraically closed field $k$.", "revisions": [ { "version": "v1", "updated": "2003-02-18T11:27:24.000Z" } ], "analyses": { "keywords": [ "nilpotent commuting variety", "reductive lie algebra", "algebraically closed field", "characteristic zero", "vladimir baranovsky" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00222-003-0315-6", "journal": "Inventiones Mathematicae", "year": 2003, "month": "Dec", "volume": 154, "number": 3, "pages": 653 }, "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003InMat.154..653P" } } }