{ "id": "math/0302112", "version": "v1", "published": "2003-02-11T05:50:33.000Z", "updated": "2003-02-11T05:50:33.000Z", "title": "On dimension reduction in the Kähler-Ricci flow", "authors": [ "Huai-Dong Cao" ], "comment": "15 pages, Latex", "categories": [ "math.DG" ], "abstract": "We consider dimension reduction for solutions of the K\\\"ahler-Ricci flow with nonegative bisectional curvature. When the complex dimension $n=2$, we prove an optimal dimension reduction theorem for complete translating K\\\"ahler-Ricci solitons with nonnegative bisectional curvature. We also prove a general dimension reduction theorem for complete ancient solutions of the K\\\"ahler-Ricci flow with nonnegative bisectional curvature on noncompact complex manifolds under a finiteness assumption on the Chern number $c^n_1$.", "revisions": [ { "version": "v1", "updated": "2003-02-11T05:50:33.000Z" } ], "analyses": { "keywords": [ "kähler-ricci flow", "nonnegative bisectional curvature", "general dimension reduction theorem", "optimal dimension reduction theorem", "noncompact complex manifolds" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2112C" } } }