{ "id": "math/0302072", "version": "v1", "published": "2003-02-06T20:41:45.000Z", "updated": "2003-02-06T20:41:45.000Z", "title": "Measures Invariant under the Geodesic Flow and their Projections", "authors": [ "Craig J. Sutton" ], "comment": "4 pages, To appear in Proc. Amer. Math. Soc", "categories": [ "math.DG", "math.DS" ], "abstract": "Let $S^{n}$ be the $n$-sphere of constant positive curvature. For $n \\geq 2$, we will show that a measure on the unit tangent bundle of $S^{2n}$, which is even and invariant under the geodesic flow, is not uniquely determined by its projection to $S^{2n}$.", "revisions": [ { "version": "v1", "updated": "2003-02-06T20:41:45.000Z" } ], "analyses": { "subjects": [ "53D25" ], "keywords": [ "geodesic flow", "measures invariant", "projection", "unit tangent bundle" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......2072S" } } }