{ "id": "math/0301293", "version": "v3", "published": "2003-01-24T23:11:16.000Z", "updated": "2004-09-20T14:28:03.000Z", "title": "On Regularly Branched Maps", "authors": [ "H. Murat Tuncali", "Vesko Valov" ], "comment": "12 pages", "categories": [ "math.GN" ], "abstract": "Let $f\\colon X\\to Y$ be a perfect map between finite-dimensional metrizable spaces and $p\\geq 1$. It is shown that the space $C^*(X,\\R^p)$ of all bounded maps from $X$ into $\\R^p$ with the source limitation topology contains a dense $G_{\\delta}$-subset consisting of $f$-regularly branched maps. Here, a map $g\\colon X\\to\\R^p$ is $f$-regularly branched if, for every $n\\geq 1$, the dimension of the set $\\{z\\in Y\\times\\R^p: |(f\\times g)^{-1}(z)|\\geq n\\}$ is $\\leq n\\cdot\\big(\\dim f+\\dim Y\\big)-(n-1)\\cdot\\big(p+\\dim Y\\big)$. This is a parametric version of the Hurewicz theorem on regularly branched maps.", "revisions": [ { "version": "v3", "updated": "2004-09-20T14:28:03.000Z" } ], "analyses": { "subjects": [ "54F45", "55M10", "54C65" ], "keywords": [ "regularly branched maps", "source limitation topology contains", "perfect map", "finite-dimensional metrizable spaces", "parametric version" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......1293M" } } }