{ "id": "math/0301213", "version": "v2", "published": "2003-01-20T13:53:07.000Z", "updated": "2003-03-19T10:34:37.000Z", "title": "Isoperimetry and heat kernel decay on percolation clusters", "authors": [ "Pierre Mathieu", "Elisabeth Remy" ], "journal": "Annals of Probability, vol. 32 1A, pp 100-128, 2004", "categories": [ "math.PR" ], "abstract": "We prove that the heat kernel on the infinite Bernoulli percolation cluster in Z^d almost surely decays faster than t^{-d/2}. We also derive estimates on the mixing time for the random walk confined to a finite box. Our approach is based on local isoperimetric inequalities.", "revisions": [ { "version": "v2", "updated": "2003-03-19T10:34:37.000Z" } ], "analyses": { "keywords": [ "heat kernel decay", "isoperimetry", "infinite bernoulli percolation cluster", "local isoperimetric inequalities", "surely decays faster" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......1213M" } } }