{ "id": "math/0301060", "version": "v1", "published": "2003-01-07T22:21:50.000Z", "updated": "2003-01-07T22:21:50.000Z", "title": "Oscillation of Fourier Integrals with a spectral gap", "authors": [ "A. Eremenko", "D. Novikov" ], "comment": "1 Figure", "categories": [ "math.CA", "math.CV" ], "abstract": "Suppose that Fourier transform of a function f is zero on the interval [-a,a]. We prove that the lower density of sign changes of f is at least a/pi, provided that f is a locally integrable temperate distribution in the sense of Beurling, with non-quasianalytic weight. We construct an example showing that the last condition cannot be omitted.", "revisions": [ { "version": "v1", "updated": "2003-01-07T22:21:50.000Z" } ], "analyses": { "subjects": [ "42A38", "46F12", "46F20" ], "keywords": [ "fourier integrals", "spectral gap", "oscillation", "non-quasianalytic weight", "fourier transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......1060E" } } }