{ "id": "math/0301037", "version": "v1", "published": "2003-01-06T09:35:25.000Z", "updated": "2003-01-06T09:35:25.000Z", "title": "Orthogonality of Jacobi polynomials with general parameters", "authors": [ "A. B. J. Kuijlaars", "A. Martinez-Finkelshtein", "R. Orive" ], "comment": "16 pages, 4 figures", "journal": "Electronic Transactions on Numerical Analysis 19 (2005), 1-17", "categories": [ "math.CA", "math.CV" ], "abstract": "In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\\alpha,\\beta)}$ when the parameters $\\alpha$ and $\\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the orthogonality conditions characterize the Jacobi polynomial $P_n^{(\\alpha, \\beta)}$ of degree $n$ up to a constant factor.", "revisions": [ { "version": "v1", "updated": "2003-01-06T09:35:25.000Z" } ], "analyses": { "subjects": [ "33C45" ], "keywords": [ "jacobi polynomial", "general parameters", "full orthogonality conditions", "multiple orthogonality conditions", "single contour" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......1037K" } } }