{ "id": "math/0301010", "version": "v1", "published": "2003-01-02T14:52:15.000Z", "updated": "2003-01-02T14:52:15.000Z", "title": "On the geodesic flow of surfaces of nonpositive curvature", "authors": [ "Federico Rodriguez Hertz" ], "categories": [ "math.DS" ], "abstract": "Let $S$ be a surface of nonpositive curvature of genus bigger than 1 (i.e. not the torus). We prove that any flat strip in the surface is in fact a flat cylinder. Moreover we prove that the number of homotopy classes of such flat cylinders is bounded.", "revisions": [ { "version": "v1", "updated": "2003-01-02T14:52:15.000Z" } ], "analyses": { "keywords": [ "nonpositive curvature", "geodesic flow", "flat cylinder", "flat strip", "homotopy classes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......1010R" } } }