{ "id": "math/0212289", "version": "v1", "published": "2002-12-20T09:31:57.000Z", "updated": "2002-12-20T09:31:57.000Z", "title": "Lipschitz spaces and Calderon-Zygmund operators associated to non-doubling measures", "authors": [ "Jose Garcia-Cuerva", "A. Eduardo Gatto" ], "comment": "10 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "In the setting of $\\R^d$ with an $n-$dimensional measure $\\mu,$ we give several characterizations of Lipschitz spaces in terms of mean oscillations involving $\\mu.$ We also show that Lipschitz spaces are preserved by those Calderon-Zygmund operators $T$ associated to the measure $\\mu$ for which T(1) is the Lipschitz class $0.$", "revisions": [ { "version": "v1", "updated": "2002-12-20T09:31:57.000Z" } ], "analyses": { "subjects": [ "42B20", "26A33", "47B38", "47G10" ], "keywords": [ "lipschitz spaces", "calderon-zygmund operators", "non-doubling measures", "dimensional measure", "mean oscillations" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....12289G" } } }