{ "id": "math/0212189", "version": "v1", "published": "2002-12-13T16:55:35.000Z", "updated": "2002-12-13T16:55:35.000Z", "title": "On the density of geometrically finite Kleinian groups", "authors": [ "Jeffrey F. Brock", "Kenneth W. Bromberg" ], "comment": "59 pages, 2 figures", "categories": [ "math.GT", "math.DS" ], "abstract": "The density conjecture of Bers, Sullivan and Thurston predicts that each complete hyperbolic 3-manifold M with finitely generated fundamental group is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We prove that the conjecture obtains for each complete hyperbolic 3-manifold with no cusps and incompressible ends.", "revisions": [ { "version": "v1", "updated": "2002-12-13T16:55:35.000Z" } ], "analyses": { "subjects": [ "30F40", "37F30", "30F60" ], "keywords": [ "geometrically finite kleinian groups", "complete hyperbolic", "geometrically finite hyperbolic", "algebraic limit", "thurston predicts" ], "note": { "typesetting": "TeX", "pages": 59, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....12189B" } } }