{ "id": "math/0212170", "version": "v3", "published": "2002-12-12T09:20:53.000Z", "updated": "2004-03-08T10:26:20.000Z", "title": "Reversible coagulation-fragmentation processes and random combinatorial structures:asymptotics for the number of groups", "authors": [ "Michael Erlihson", "Boris Granovsky" ], "comment": "This version will be published in the joutnal \" Random structures and Algorithms\"", "categories": [ "math.PR", "math.CO" ], "abstract": "We establish the central limit theorem for the number of groups at the equilibrium of a coagulation-fragmentation process given by a parameter function with polynomial rate of growth. The result obtained is compared with the one for random combinatorial structures obeying the logarithmic condition.", "revisions": [ { "version": "v3", "updated": "2004-03-08T10:26:20.000Z" } ], "analyses": { "subjects": [ "60J27", "60K35", "82C22", "82C26" ], "keywords": [ "reversible coagulation-fragmentation processes", "asymptotics", "central limit theorem", "parameter function", "polynomial rate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....12170E" } } }