{ "id": "math/0212036", "version": "v4", "published": "2002-12-03T20:59:59.000Z", "updated": "2003-06-26T02:56:31.000Z", "title": "On the category O for rational Cherednik algebras", "authors": [ "Victor Ginzburg", "Nicolas Guay", "Eric Opdam", "Raphael Rouquier" ], "comment": "28 pp., LaTeX, final version, to appear in Invent. Math", "categories": [ "math.RT", "math.AG", "math.QA", "math.RA" ], "abstract": "We study the category O of representations of the rational Cherednik algebra A attached to a complex reflection group W. We construct an exact functor, called Knizhnik-Zamolodchikov functor, from O to the category of H-modules, where H is the (finite) Iwahori-Hecke algebra associated to W. We prove that the Knizhnik-Zamolodchikov functor induces an equivalence between O/O_tor, the quotient of O by the subcategory of A-modules supported on the discriminant and the category of finite-dimensional H-modules. The standard A-modules go, under this equivalence, to certain modules arising in Kazhdan-Lusztig theory of ``cells'', provided W is a Weyl group and the Hecke algebra H has equal parameters. We prove that the category O is equivalent to the module category over a finite dimensional algebra, a generalized \"q-Schur algebra\" associated to W.", "revisions": [ { "version": "v4", "updated": "2003-06-26T02:56:31.000Z" } ], "analyses": { "keywords": [ "rational cherednik algebra", "finite dimensional algebra", "complex reflection group", "knizhnik-zamolodchikov functor induces", "module category" ], "note": { "typesetting": "LaTeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }