{ "id": "math/0212035", "version": "v1", "published": "2002-12-03T02:36:42.000Z", "updated": "2002-12-03T02:36:42.000Z", "title": "Numerical Computation of \\prod_{n=1}^\\infty (1 - tx^n)", "authors": [ "Alan D. Sokal" ], "categories": [ "math.NA" ], "abstract": "I present and analyze a quadratically convergent algorithm for computing the infinite product \\prod_{n=1}^\\infty (1 - tx^n) for arbitrary complex t and x satisfying |x| < 1, based on the identity \\prod_{n=1}^\\infty (1 - tx^n) = \\sum_{m=0}^\\infty {(-t)^m x^{m(m+1)/2} \\over (1-x)(1-x^2) ... (1-x^m)} due to Euler. The efficiency of the algorithm deteriorates as |x| \\uparrow 1, but much more slowly than in previous algorithms. The key lemma is a two-sided bound on the Dedekind eta function at pure imaginary argument, \\eta(iy), that is sharp at the two endpoints y=0,\\infty and is accurate to within 9.1% over the entire interval 0 < y < \\infty.", "revisions": [ { "version": "v1", "updated": "2002-12-03T02:36:42.000Z" } ], "analyses": { "subjects": [ "33F05", "05A30", "11F20", "11P82", "33D99", "65D20", "82B23" ], "keywords": [ "numerical computation", "dedekind eta function", "pure imaginary argument", "infinite product", "arbitrary complex" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....12035S" } } }