{ "id": "math/0211409", "version": "v1", "published": "2002-11-26T13:57:18.000Z", "updated": "2002-11-26T13:57:18.000Z", "title": "Cramer's estimate for the exponential functional of a Levy process", "authors": [ "Mejane Olivier" ], "comment": "12 pages", "categories": [ "math.PR" ], "abstract": "We consider the exponential functional $A_{\\infty}=\\int_0^{\\infty} e^{\\xi_s} ds$ associated to a Levy process $(\\xi_t)_{t \\geq 0}$. We find the asymptotic behavior of the tail of this random variable, under some assumptions on the process $\\xi$, the main one being Cramer's condition, that asserts the existence of a real $\\chi >0$ such that ${\\Bbb E}(e^{\\chi \\xi_1})=1$. Then there exists $C>0$ satisfying, when $t \\to +\\infty$ : $$ {\\Bbb P} (A_{\\infty}> t) \\sim C t^{-\\chi} \\quad . $$ This result can be applied for example to the process $\\xi_t = at - S_{\\alpha}(t)$ where $S_{\\alpha}$ stands for the stable subordinator of index $\\alpha$ ($0 < \\alpha < 1$), and $a$ is a positive real (we have then $\\chi=a^{1/(\\alpha -1)}$).", "revisions": [ { "version": "v1", "updated": "2002-11-26T13:57:18.000Z" } ], "analyses": { "keywords": [ "levy process", "exponential functional", "cramers estimate", "asymptotic behavior", "cramers condition" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11409O" } } }