{ "id": "math/0211322", "version": "v3", "published": "2002-11-20T16:07:53.000Z", "updated": "2008-08-27T07:00:38.000Z", "title": "The dimension of the SLE curves", "authors": [ "Vincent Beffara" ], "comment": "Published in at http://dx.doi.org/10.1214/07-AOP364 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2008, Vol. 36, No. 4, 1421-1452", "doi": "10.1214/07-AOP364", "categories": [ "math.PR", "math.CV" ], "abstract": "Let $\\gamma$ be the curve generating a Schramm--Loewner Evolution (SLE) process, with parameter $\\kappa\\geq0$. We prove that, with probability one, the Hausdorff dimension of $\\gamma$ is equal to $\\operatorname {Min}(2,1+\\kappa/8)$.", "revisions": [ { "version": "v3", "updated": "2008-08-27T07:00:38.000Z" } ], "analyses": { "subjects": [ "60D05", "60G17", "28A80" ], "keywords": [ "sle curves", "schramm-loewner evolution", "hausdorff dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 873871, "adsabs": "2002math.....11322B" } } }