{ "id": "math/0211314", "version": "v1", "published": "2002-11-20T11:50:14.000Z", "updated": "2002-11-20T11:50:14.000Z", "title": "Intersecting Families of Separated Sets", "authors": [ "John Talbot" ], "comment": "21 pages. To appear in the Journal of the London Mathematical Society", "categories": [ "math.CO" ], "abstract": "We prove a conjecture due to Holroyd and Johnson that an analogue of the Erdos-Ko-Rado theorem holds for k-separated sets. In particular this determines the independence number of the vertex-critical subgraph of the Kneser graph identified by Schrijver, the collection of separated sets.", "revisions": [ { "version": "v1", "updated": "2002-11-20T11:50:14.000Z" } ], "analyses": { "subjects": [ "05D05", "05C65" ], "keywords": [ "intersecting families", "erdos-ko-rado theorem holds", "independence number", "kneser graph", "k-separated sets" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11314T" } } }