{ "id": "math/0211208", "version": "v1", "published": "2002-11-13T17:23:34.000Z", "updated": "2002-11-13T17:23:34.000Z", "title": "A discrete extension of Γ_{1,p}^{\\circ}(2) in SP(4,R) and the modular form of the Barth-Nieto quintic", "authors": [ "Michael Friedland" ], "comment": "8 pages, Latex2e", "categories": [ "math.AG" ], "abstract": "We construct a maximal discrete extension of the paramodular group with a full level-2 structure. The corresponding Siegel variety parametrizes (birationally) the space of Kummer surfaces associated to (1,p)-polarized abelian surfaces with a level-2 structure. In the case p=3 this is related to the Barth-Nieto quintic and in this case we also determine the space of cusp forms of weight 3.", "revisions": [ { "version": "v1", "updated": "2002-11-13T17:23:34.000Z" } ], "analyses": { "keywords": [ "barth-nieto quintic", "modular form", "maximal discrete extension", "corresponding siegel variety parametrizes", "abelian surfaces" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11208F" } } }