{ "id": "math/0211192", "version": "v2", "published": "2002-11-12T18:01:20.000Z", "updated": "2002-11-18T18:38:21.000Z", "title": "Concentration of norms and eigenvalues of random matrices", "authors": [ "Mark W. Meckes" ], "comment": "15 pages; AMS-LaTeX; updated one reference", "journal": "J. Funct. Anal. 211 (2004) no. 2, 508-524", "doi": "10.1016/S0022-1236(03)00198-8", "categories": [ "math.PR", "math-ph", "math.FA", "math.MP" ], "abstract": "We prove concentration results for $\\ell_p^n$ operator norms of rectangular random matrices and eigenvalues of self-adjoint random matrices. The random matrices we consider have bounded entries which are independent, up to a possible self-adjointness constraint. Our results are based on an isoperimetric inequality for product spaces due to Talagrand.", "revisions": [ { "version": "v2", "updated": "2002-11-18T18:38:21.000Z" } ], "analyses": { "subjects": [ "15A52", "15A18", "15A60", "60F10" ], "keywords": [ "eigenvalues", "rectangular random matrices", "self-adjoint random matrices", "product spaces", "operator norms" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11192M" } } }