{ "id": "math/0211117", "version": "v2", "published": "2002-11-06T17:52:17.000Z", "updated": "2002-12-06T16:23:56.000Z", "title": "Central limit theorem and stable laws for intermittent maps", "authors": [ "Sebastien Gouezel" ], "comment": "42 pages", "categories": [ "math.DS" ], "abstract": "In the setting of abstract Markov maps, we prove results concerning the convergence of renormalized Birkhoff sums to normal laws or stable laws. They apply to one-dimensional maps with a neutral fixed point at 0 of the form $x+x^{1+\\alpha}$, for $\\alpha\\in (0,1)$. In particular, for $\\alpha>1/2$, we show that the Birkhoff sums of a H\\\"older observable $f$ converge to a normal law or a stable law, depending on whether $f(0)=0$ or $f(0)\\not=0$. The proof uses spectral techniques introduced by Sarig, and Wiener's Lemma in noncommutative Banach algebras.", "revisions": [ { "version": "v2", "updated": "2002-12-06T16:23:56.000Z" } ], "analyses": { "subjects": [ "37A30", "37A50", "37C30", "37E05", "47A56", "60F05" ], "keywords": [ "central limit theorem", "stable law", "intermittent maps", "normal law", "abstract markov maps" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11117G" } } }