{ "id": "math/0211044", "version": "v1", "published": "2002-11-04T12:23:57.000Z", "updated": "2002-11-04T12:23:57.000Z", "title": "On the quantum sl_2 invariants of knots and integral homology spheres", "authors": [ "Kazuo Habiro" ], "comment": "Published by Geometry and Topology Monographs at http://www.maths.warwick.ac.uk/gt/GTMon4/paper5.abs.html", "journal": "Geom. Topol. Monogr. 4 (2002) 55-68", "categories": [ "math.GT", "math.QA" ], "abstract": "We will announce some results on the values of quantum sl_2 invariants of knots and integral homology spheres. Lawrence's universal sl_2 invariant of knots takes values in a fairly small subalgebra of the center of the h-adic version of the quantized enveloping algebra of sl_2. This implies an integrality result on the colored Jones polynomials of a knot. We define an invariant of integral homology spheres with values in a completion of the Laurent polynomial ring of one variable over the integers which specializes at roots of unity to the Witten-Reshetikhin-Turaev invariants. The definition of our invariant provides a new definition of Witten-Reshetikhin-Turaev invariant of integral homology spheres.", "revisions": [ { "version": "v1", "updated": "2002-11-04T12:23:57.000Z" } ], "analyses": { "subjects": [ "57M27", "17B37" ], "keywords": [ "integral homology spheres", "witten-reshetikhin-turaev invariant", "definition", "fairly small subalgebra", "laurent polynomial" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11044H" } } }