{ "id": "math/0211030", "version": "v2", "published": "2002-11-02T15:57:26.000Z", "updated": "2003-11-20T17:02:00.000Z", "title": "On the absolute convergence of the spectral side of the Arthur trace formula for GL(n)", "authors": [ "Werner Mueller", "Birgit Speh", "Erez M. Lapid" ], "comment": "33 pages, Appendix (by Erez M. Lapid) added by which the K-finiteness assumption in the previous version has been lifted", "categories": [ "math.RT", "math.SP" ], "abstract": "Let G be the group GL(n) over a number field E and let A be the ring of adeles of E. In this paper we prove that the spectral side of the Arthur trace formula for G is absolutely convergent for all integrable rapidly decreasing functions on $G(A)^1$.", "revisions": [ { "version": "v2", "updated": "2003-11-20T17:02:00.000Z" } ], "analyses": { "subjects": [ "22E40", "58G25" ], "keywords": [ "arthur trace formula", "spectral side", "absolute convergence", "group gl", "number field" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....11030M" } } }