{ "id": "math/0210313", "version": "v1", "published": "2002-10-21T01:42:50.000Z", "updated": "2002-10-21T01:42:50.000Z", "title": "The critical order of certain Hecke L-functions of imaginary quadratic fields", "authors": [ "Chunlei Liu", "Lanju Xu" ], "categories": [ "math.NT" ], "abstract": "Let $-D < -4$ denote a fundamental discriminant which is either odd or divisible by 8, so that the canonical Hecke character of $\\Bbb Q(\\sqrt{-D})$ exists. Let $d$ be a fundamental discriminant prime to $D$. Let $2k-1$ be an odd natural integer prime to the class number of $\\Bbb Q(\\sqrt{-D})$. Let $\\chi$ be the twist of the $(2k-1)$th power of a canonical Hecke character of $\\Bbb Q(\\sqrt{-D})$ by the Kronecker's symbol $n\\mapsto(\\frac{d}{n})$. It is proved that the order of the Hecke $L$-function $L(s,\\chi)$ at its central point $s=k$ is determined by its root number when $|d| \\leq c(\\epsilon)D^{{1/24}-\\epsilon}$ or, when $|d| \\leq c(\\epsilon)D^{\\frac1{12} -\\epsilon}$ and $k\\geq 2$, where $\\epsilon > 0$ and $c(\\epsilon)$ is a constant depending only on $\\epsilon$.", "revisions": [ { "version": "v1", "updated": "2002-10-21T01:42:50.000Z" } ], "analyses": { "subjects": [ "11R42", "11G05" ], "keywords": [ "imaginary quadratic fields", "hecke l-functions", "critical order", "canonical hecke character", "odd natural integer prime" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....10313L" } } }