{ "id": "math/0210248", "version": "v2", "published": "2002-10-16T16:38:40.000Z", "updated": "2002-11-19T17:31:46.000Z", "title": "Invariants Associated to Orthogonal $ε$-constants", "authors": [ "Darren Glass" ], "comment": "9 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper we use the theory of $\\epsilon$-constants associated to tame finite group actions on arithmetic surfaces to define a Brauer group invariant $\\mu(\\X,G,V)$ associated to certain symplectic motives of weight one. We then discuss the relationship between this invariant and $w_2(\\pi)$, the Galois theoretic invariant associated to tame covers of surfaces.", "revisions": [ { "version": "v2", "updated": "2002-11-19T17:31:46.000Z" } ], "analyses": { "keywords": [ "invariants", "tame finite group actions", "orthogonal", "brauer group invariant", "arithmetic surfaces" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....10248G" } } }