{ "id": "math/0210196", "version": "v3", "published": "2002-10-14T09:00:17.000Z", "updated": "2003-04-02T09:22:26.000Z", "title": "Vanishing thetanulls and hyperelliptic curves", "authors": [ "Olivier Schneider" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "Let $\\mathcal{M}_{g,2}$ be the moduli space of curves of genus $g$ with a level-2 structure. We prove here that there is always a non hyperelliptic element in the intersection of four thetanull divisors in $\\mathcal{M}_{6,2}$. We prove also that for all $g\\geqslant3$, each component of the hyperelliptic locus in $\\mathcal{M}_{g,2}$ is a connected component of the intersection of $g-2$ thetanull divisors.", "revisions": [ { "version": "v3", "updated": "2003-04-02T09:22:26.000Z" } ], "analyses": { "keywords": [ "hyperelliptic curves", "vanishing thetanulls", "thetanull divisors", "non hyperelliptic element", "hyperelliptic locus" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....10196S" } } }