{ "id": "math/0210191", "version": "v1", "published": "2002-10-13T18:16:44.000Z", "updated": "2002-10-13T18:16:44.000Z", "title": "On subgroups of free Burnside groups of large odd exponent", "authors": [ "S. V. Ivanov" ], "comment": "5 pages", "categories": [ "math.GR" ], "abstract": "We prove that every noncyclic subgroup of a free $m$-generator Burnside group $B(m,n)$ of odd exponent $n \\gg 1$ contains a subgroup $H$ isomorphic to a free Burnside group $B(\\infty,n)$ of exponent $n$ and countably infinite rank such that for every normal subgroup $K$ of $H$ the normal closure $^{B(m,n)}$ of $K$ in $B(m,n)$ meets $H$ in $K$. This implies that every noncyclic subgroup of $B(m,n)$ is SQ-universal in the class of groups of exponent $n$.", "revisions": [ { "version": "v1", "updated": "2002-10-13T18:16:44.000Z" } ], "analyses": { "subjects": [ "20E07", "20F05", "20F50" ], "keywords": [ "free burnside group", "large odd exponent", "noncyclic subgroup", "generator burnside group", "countably infinite rank" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....10191I" } } }