{ "id": "math/0209405", "version": "v1", "published": "2002-09-30T09:06:06.000Z", "updated": "2002-09-30T09:06:06.000Z", "title": "Demushkin's Theorem in Codimension One", "authors": [ "Florian Berchtold", "Juergen Hausen" ], "comment": "6 pages, to appear in Math. Z", "journal": "Math. Z. 244, No. 4, 697-703 (2003)", "categories": [ "math.AG", "math.AC" ], "abstract": "Demushkin's Theorem says that any two toric structures on an affine variety X are conjugate in the automorphism group of X. We provide the following extension: Let an (n-1)-dimensional torus T act effectively on an n-dimensional affine toric variety X. Then T is conjugate in the automorphism group of X to a subtorus of the big torus of X.", "revisions": [ { "version": "v1", "updated": "2002-09-30T09:06:06.000Z" } ], "analyses": { "subjects": [ "13A50", "14L30", "14M25", "14R20" ], "keywords": [ "codimension", "n-dimensional affine toric variety", "automorphism group", "demushkins theorem says", "affine variety" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9405B" } } }