{ "id": "math/0209329", "version": "v1", "published": "2002-09-24T21:42:57.000Z", "updated": "2002-09-24T21:42:57.000Z", "title": "Zeros of orthogonal polynomials on the real line", "authors": [ "Sergey A. Denisov", "Barry Simon" ], "comment": "(preliminary version)", "categories": [ "math.CA", "math-ph", "math.MP" ], "abstract": "Let $p_n(x)$ be orthogonal polynomials associated to a measure $d\\mu$ of compact support in $R$. If $E\\not\\in supp(d\\mu)$, we show there is a $\\delta>0$ so that for all $n$, either $p_n$ or $p_{n+1}$ has no zeros in $(E-\\delta, E+\\delta)$. If $E$ is an isolated point of $supp(d\\mu)$, we show there is a $\\delta$ so that for all $n$, either $p_n$ or $p_{n+1}$ has at most one zero in $(E-\\delta, E+\\delta)$. We provide an example where the zeros of $p_n$ are dense in a gap of $supp(d\\mu)$.", "revisions": [ { "version": "v1", "updated": "2002-09-24T21:42:57.000Z" } ], "analyses": { "subjects": [ "42C05", "47B36" ], "keywords": [ "real line", "compact support", "orthogonal polynomials", "isolated point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9329D" } } }