{ "id": "math/0209323", "version": "v1", "published": "2002-09-24T12:35:44.000Z", "updated": "2002-09-24T12:35:44.000Z", "title": "A sufficient condition for a finite-time $ L_2 $ singularity of the 3d Euler Equation", "authors": [ "Xinyu He" ], "comment": "AMS_Tex, 8 pages", "categories": [ "math.AP" ], "abstract": "A sufficient condition is derived for a finite-time $L_2$ singularity of the 3d incompressible Euler equations, making appropriate assumptions on eigenvalues of the Hessian of pressure. Under this condition $\\lim_{t \\to T_*} \\sup | \\frac{D \\o} {Dt} |_{L_2(\\vO)} = \\infty$, where $~ \\vO \\subset \\R3$ moves with the fluid. In particular, $|{\\o}|$, $|\\S_{ij}| , and $|\\P_{ij}|$ all become unbounded at one point $(x_1,T_1)$, $T_1$ being the first blow-up time in $L_2$.", "revisions": [ { "version": "v1", "updated": "2002-09-24T12:35:44.000Z" } ], "analyses": { "subjects": [ "76B03", "76D05" ], "keywords": [ "3d euler equation", "sufficient condition", "singularity", "finite-time", "3d incompressible euler equations" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9323H" } } }