{ "id": "math/0209235", "version": "v1", "published": "2002-09-18T21:11:03.000Z", "updated": "2002-09-18T21:11:03.000Z", "title": "Tilting modules for Lie superalgebras", "authors": [ "Jonathan Brundan" ], "comment": "16 pages", "journal": "Commun. in Algebra 32 (2004), 2251-2268.", "categories": [ "math.RT" ], "abstract": "This is a companion article to my papers on Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebras gl(m|n) (much revised!) and q(n). The goal is to develop the general theory of tilting modules for Lie superalgebras, working in a general graded setting very similar to work of Soergel (Character formulae for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432-438) in the Lie algebra case. Examples are given involving the Lie superalgebras gl(m|n) and q(n), but maybe this will also be useful for the other classical and affine Lie superalgebras.", "revisions": [ { "version": "v1", "updated": "2002-09-18T21:11:03.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "tilting modules", "character formulae", "affine lie superalgebras", "lie algebra case", "companion article" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9235B" } } }