{ "id": "math/0209092", "version": "v1", "published": "2002-09-09T14:54:32.000Z", "updated": "2002-09-09T14:54:32.000Z", "title": "On the irreducibility of the two variable zeta-function for curves over finite fields", "authors": [ "Niko Naumann" ], "comment": "7 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "In [P] R. Pellikaan introduced a two variable zeta-function for a curve over a finite field and proved that it is a rational function. Here we show that its denominator is absolutely irreducible. This is motivated by work of J. Lagarias and E. Rains on an analogous two variable zeta-funtion for number fields.", "revisions": [ { "version": "v1", "updated": "2002-09-09T14:54:32.000Z" } ], "analyses": { "subjects": [ "11G20", "14G10" ], "keywords": [ "finite field", "variable zeta-function", "irreducibility", "number fields" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9092N" } } }