{ "id": "math/0208055", "version": "v1", "published": "2002-08-07T14:36:25.000Z", "updated": "2002-08-07T14:36:25.000Z", "title": "How many operators do there exist on a Banach space?", "authors": [ "Th. Schlumprecht" ], "categories": [ "math.FA" ], "abstract": "We present partial results to the following question: Does every infinite dimensional Banach space have an infinite dimensional subspace on which one can define an operator which is not a compact perturbation of a scalar multiplication?", "revisions": [ { "version": "v1", "updated": "2002-08-07T14:36:25.000Z" } ], "analyses": { "subjects": [ "46B03", "46B20" ], "keywords": [ "infinite dimensional banach space", "infinite dimensional subspace", "partial results", "compact perturbation", "scalar multiplication" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......8055S" } } }