{ "id": "math/0208031", "version": "v1", "published": "2002-08-05T06:21:31.000Z", "updated": "2002-08-05T06:21:31.000Z", "title": "The toric Hilbert scheme of a rank two lattice is smooth and irreducible", "authors": [ "Diane Maclagan", "Rekha R. Thomas" ], "comment": "19 pages, 4 figures", "categories": [ "math.AG", "math.CO" ], "abstract": "The toric Hilbert scheme of a lattice L in Z^n is the multigraded Hilbert scheme parameterizing all ideals in k[x_1,...,x_n] with Hilbert function value one for every degree in the grading monoid N^n/L. In this paper we show that if L is two-dimensional, then the toric Hilbert scheme of L is smooth and irreducible. This result is false for lattices of dimension three and higher as the toric Hilbert scheme of a rank three lattice can be reducible.", "revisions": [ { "version": "v1", "updated": "2002-08-05T06:21:31.000Z" } ], "analyses": { "keywords": [ "toric hilbert scheme", "irreducible", "hilbert function value", "multigraded hilbert scheme parameterizing", "grading monoid" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......8031M" } } }