{ "id": "math/0207257", "version": "v1", "published": "2002-07-27T00:27:33.000Z", "updated": "2002-07-27T00:27:33.000Z", "title": "Rational curves on hypersurfaces of low degree, II", "authors": [ "Joe Harris", "Jason Starr" ], "comment": "47 pages", "categories": [ "math.AG" ], "abstract": "This is a continuation of \"Rational curves on hypersurfaces of low degree\", math.AG/0203088. We prove that if d^2+d+1 < n and d > 2, then for a general hypersurface X_d in P^n of degree d, for each degree e the space of rational curves of degree e on X is itself a rationally connected variety.", "revisions": [ { "version": "v1", "updated": "2002-07-27T00:27:33.000Z" } ], "analyses": { "subjects": [ "14N25", "14C05" ], "keywords": [ "rational curves", "low degree", "general hypersurface" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......7257H" } } }