{ "id": "math/0207236", "version": "v2", "published": "2002-07-25T16:43:38.000Z", "updated": "2002-12-04T01:28:36.000Z", "title": "Random matrix theory and discrete moments of the Riemann zeta function", "authors": [ "C. P. Hughes" ], "comment": "Replacement corrects slight typos. To be published in J. Phys. A, special issue in Random Matrix Theory", "doi": "10.1088/0305-4470/36/12/303", "categories": [ "math.NT" ], "abstract": "We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.", "revisions": [ { "version": "v2", "updated": "2002-12-04T01:28:36.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "random matrix theory", "discrete moments", "random unitary matrix", "small distance away" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2003, "month": "Mar", "volume": 36, "number": 12, "pages": 2907 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003JPhA...36.2907H" } } }