{ "id": "math/0207130", "version": "v3", "published": "2002-07-16T14:27:56.000Z", "updated": "2003-10-19T19:12:49.000Z", "title": "Mean Curvature Flow, Orbits, Moment Maps", "authors": [ "T. Pacini" ], "comment": "18 pages; minor changes", "journal": "Trans. A.M.S., vol. 355 n. 8 (2003), pp. 3343-3357", "categories": [ "math.DG" ], "abstract": "Given a compact Riemannian manifold together with a group of isometries, we discuss MCF of the orbits and some applications: eg, finding minimal orbits. We then specialize to Lagrangian orbits in Kaehler manifolds. In particular, in the Kaehler-Einstein case we find a relation between MCF and moment maps which, for example, proves that the minimal Lagrangian orbits are isolated.", "revisions": [ { "version": "v3", "updated": "2003-10-19T19:12:49.000Z" } ], "analyses": { "subjects": [ "53C44", "53C42", "53D20" ], "keywords": [ "mean curvature flow", "moment maps", "minimal lagrangian orbits", "compact riemannian manifold", "finding minimal orbits" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......7130P" } } }